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Engineering systems typically comprise numerous
components and the interfaces between these
components are often frictional.

• Damping due to microslip in nominally static
bolted joints.

• Fretting fatigue (e.g. in turbine blade roots).

• Settlement of soils or masonry structures.

• Tectonic plate movement.

• Frictional ‘wedging’ during automatic assembly
processes.

• Frictional slip in belt drives....



Many of these applications involve periodic (cyclic)
loading, due to vibration, or to repetitive operations.

Friction is a major factor in fretting fatigue failures
(aircraft engines) and it also determines the amount of
hysteresis loss (effective damping) in systems that are
nominally monolithic.

It has been estimated that frictional hysteresis in
assembled structures accounts for more energy
dissipation that internal material damping.



The Coulomb friction law

For a two-dimensional system, each point in the
nominal interface must be in one of four states:-

Stick w = 0 ; v̇ = 0 ; p ≥ 0 ; |q| ≤ f p
Separation w > 0 ; p = 0 ; q = 0
Forward slip w = 0 ; v̇ > 0 ; p ≥ 0 ; q = − f p
Backward slipw = 0 ; v̇ < 0 ; p ≥ 0 ; q = f p ,
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contact tractions displacements
where f is the coefficient of friction.



The Coulomb law has been criticized extensively by
tribologists, but it is sufficiently close to the
experimentally observed behaviour of macroscopic
systems to justify use in engineering design, because
of its simplicity.



This simplicity is a bit of an illusion. The governing
equations are linear (in two-dimensions), but the
associated inequalities lead to quite complex
behaviour [non-uniqueness, non-existence, jumps in
quasi-static response, wedging,...], when the
coefficient of friction is ‘sufficiently large’.

In this talk, I focus on cases where we are below the
critical coefficient of friction, so the incremental
problem is well-posed and has a unique solution.



A critical feature of the frictional contact problem is
that it is load-history dependent.

This arises because the slip condition includes the sign
of the slip velocity ˙v which is a time derivative.

We recall

Stick w = 0 ; v̇ = 0 ; p ≥ 0 ; |q| ≤ f p
Separation w > 0 ; p = 0 ; q = 0
Forward slip w = 0 ; v̇ > 0 ; p ≥ 0 ; q = − f p
Backward slipw = 0 ; v̇ < 0 ; p ≥ 0 ; q = f p ,
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For values of the applied forceFFF(t) that involve
contact, the positionuuu(t) of the massM cannot be
determined from the instantaneous value ofFFF(t) alone.

We need an initial condition and a loading history.



Multinode system

Suppose there are nowN contact nodes and we use the
notation

{

qi

pi

}

=

{

qw
i

pw
i

}

+

[

Ai j Bi j

B ji Ci j

]{

v j

w j

}

,

wherepw
i ,qw

i are the contact tractions that would be
produced if the nodes were all welded in contact at
vi = wi = 0.

If all the nodes are in contact (w j = 0 for all j),

qi = qw
i +Ai jv j

pi = pw
i +B jiv j



History dependence implies that the system in some
sense posesses‘memory’.

In frictional systems, it is clear that the system
memory must reside in the slip displacements in
regions that are not slipping (at the present instant),
and hence that lie strictly between the two boundaries
defined by the frictional inequalities.

These are contained in the vectorvi.

The trajectory invi-space is a good way of tracking the
evolution of the system.



If the applied loads are periodic in time, we anticipate
eventually reaching a steady state.

We might get to this after a finite time, or we might
approach it asymptotically.

Because of the history dependence, the steady state
may depend on the initial condition, or on an initial
loading path leading to the periodic state.



What does this dependence on initial conditions look
like?

Suppose that the loading is such that no nodes leave
contact (wi = 0 for all i).

The instantaneous state of the system{v1,v2,v3...vN}
defines a pointP in vi-space.



P must satisfy the frictional constraints

(A ji− f B ji)vi(t) ≤ f pw
j (t)−qw

j (t)
(A ji + f B ji)vi(t) ≥− f pw

j (t)−qw
j (t)

These define a set of 2N directional hyperplanes in
vi-space if there areN contact nodes.

These hyperplanes advance and recede as the load
varies periodically, but retain the same slope (which is
determined byAAA,BBB and f .

During periods of slip, one or more of the advancing
hyperplanes ‘push’ the pointP around the space.



Two-node system

For N = 2, there are just four such constraints

(A11− f B11)v1+(A12− f B12)v2 ≤ f pw
1 −qw

1 I

(A11+ f B11)v1+(A12+ f B12)v2 ≥ − f pw
1 −qw

1 II

(A21− f B21)v1+(A22− f B22)v2 ≤ f pw
2 −qw

2 III

(A21+ f B21)v1+(A22+ f B22)v2 ≥ − f pw
2 −qw

2 IV

These control the motions

I: v̇1 < 0 ; II: v̇1 > 0 ; III: v̇2 < 0 ; IV: v̇2 > 0
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If IV advances, it will pushP in the direction ˙v2 > 0
(forward slip at node 2).



A special case here concerns ‘shakedown’ which
means that in the steady state, there is no frictional
slip.

In other words, slip that has occurred early in the
loading process is sufficient to prevent further slip in
the steady state.



The lines IE, IIE etc. define the extreme positions
(maximum advance) of the constraints.

For shakedown to be possible, there must be asafe
shakedown region that is never excluded by any of the
constraints.

v2

v1

II E

III E

I E

safe shakedown
       regionIV E



Advance of IV (v̇2 > 0) to IVE, followed by advance of
I (v̇1 < 0) to IE, pushesP towards the safe shakedown
region ‘SD’.
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SD

1P

2P
3P4P

IV E

IE

P always reaches the safe shakedown region if this is a
quadrilateral, but not always if it is triangular.
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With an appropriate initial condition, it can end up
oscillating betweenP1 andP2.

This criterion can be generalized to anN-node system.



In the analogous process of elastic-plastic deformation
there is a theorem (Melan’s theorem) which states
essentially that

The system will shake down if it can.

— i.e. if a suitable state of residual stress exists.

Clearly this is not always true for frictional systems.

[We just found a counter-example — the triangular
safe region.]



We have proved that the frictional Melan’s theorem
appliesif and only if there is no coupling between
normal and tangential loading.

In other words, in

{

qi

pi

}

=

{

qw
i

pw
i

}

+

[

Ai j Bi j

B ji Ci j

]{

v j

w j

}

,

the matrixBBB = 000.



In mathematical terms, the theorem states:-

“If we can find a time-independentsafe shakedown
vector ṽvv such that the corresponding reaction vector

r̃rr(t) = rrrw(t)+KKKṽvv

lies strictly within the friction cone at all nodes and all
timest, then an uncoupled system will shake down,
though not necessarily to the state defined byṽvv.”

rrri =

{

qi

pi

}

Actually, the proof applies to both two and
three-dimensional systems, so the tangential reaction
qi can itself be a vector in the contact plane.



Proof

We define the norm

A =
1
2

(ṽvv− vvv)T KKK (ṽvv− vvv) ,

which is a scalar measure of the difference between
the instantaneous slip-displacement vector and the safe
shakedown vector. SinceKKK is positive definite,A ≥ 0.

The time-derivative ofA is

Ȧ = −(ṽvv− vvv)T KKKv̇vv = −
n

∑
i−1

(r̃rri− rrri) · v̇vvi



The only contributions to

Ȧ = −
n

∑
i−1

(r̃rri− rrri) · v̇vvi

come from nodes where ˙vi 6= 0 — i.e. nodes that are
slipping.

If BBB = 0, the normal component ofrrri is not affected by
vvv.

It follows thatrrri andr̃rri have the same normal
componentpi and therefore lie on a plane inrrr-space
that cuts the friction cone for nodei in a circle.
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If nodei is slipping,rrri must be on the boundary of the
circle, the safe shakedown reactionr̃rri must be strictly
inside the circle, and the Coulomb friction flow rule
requires that the slip velocitẏvvvi be directed
perpendicular into the circle atr̃rri.

Thus, the dot product(r̃rri− rrri) · v̇vvi is always positive
andȦ < 0.



Any slip that occurs reducesA and hence makes the
system approach the safe shakedown state
monotonically.

Whenever there is coupling(BBB 6= 000), counter examples
to the theorem can be found — the occurrence of
shakedown depends on initial conditions.

We have seen an example of this in the two-node case.



If BBB === 000, the constraints reduce to

A jivi(t) ≤ f pw
j (t)−qw

j (t)
A jivi(t) ≥ − f pw

j (t)−qw
j (t)

and hence the two hyperplanes corresponding to a
given nodej are parallel.
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Clearly the safe shakedown region, if it is not null, will
be a parallelogram, and hencea fortiori a
quadrilateral, as required for Melan’s theorem to apply.



A conjecture

• For uncoupled systems in the steady-state , the
tractions at the slipping nodes, the time-varying
terms in the remaining tractions and displacements,
and hence the energy dissipation per cycle are
independent of initial conditions.

[The frictional Melan’s theorem would be a special
case, where the dissipation is zero].

• For coupled systems, the steady-state and the
energy dissipation per cycle will sometimes depend
of initial conditions.



There is anecdotal evidence for this conjecture:-

(i) Fretting fatigue tests [where frictional slip is
causing damage that eventually leads to a fatigue
failure] are very consistent for smooth
‘Hertzian-like’ contact geometries.

In this case, the system is reasonably approximated
by two half planes, which involves no coupling.

Similar tests for a flat indenter pressed against a
plane surface, [where there is significant coupling]
give very erratic results.



(ii) Experimental tests on the effective damping in
bolted joints shows that the results are very erratic.

Apparently identical systems give different results
and even the same system, if disassembled and then
reassembled, can give very different results.

[This is like changing the initial conditions].



For uncoupled systems, thenormal nodal forces are
unique (since they are equal topw

j and are defined by
the periodic loading).

It follows thatduring sliding (in a given direction) the
tangential tractions are also unique.



Consider some scenarios for the two-node system:-
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C

The extreme positions of IIIE, IVE leave a ‘safe’ space,
but IE, IIE overlap, forcing cyclic slip at node 1.

A andB are two possible steady states with different
‘locked-in’ displacementsv2.



The safe space between IIIE and IVE is not sufficient to
ensure that node 2 is always stuck.

v2

v1

II E

IV E
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I E

A

B

Here both nodes slip and the steady state is unique.

In general (including for coupled systems) we expect
that the non-uniqueness in the steady state arises from
the locked-in displacements at the ‘permanently stuck
nodes’.



A andB differ only by a constant inv1,v2 actually by a
translation of the trajectory in directionC.
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The time-derivatives of the displacements (and hence
of all the tractions) are the same for all scenarios.

The steady state will appear unique if we look in
directionC (or project the motion on a line
perpendicular toC).



To develop a similar projection that works for the
N-node uncoupled system, we need to change the
basis of the slip-displacementN-vectorvvv.

We define a newN-vector fff through the linear
operation

fff ≡ AAAvvv or f j = A jivi .

The constraints at nodej now take the form

f j ≤ f pw
j −qw

j

f j ≥ − f pw
j −qw

j .

Physically, f j is thechange in the tangential reaction
q j due to the slip displacementsvi.



The two-node trajectory inf -space looks like this:-

II E

IV E

III E

I E

1f

2f
v1

v2

A

B

The constraints are now perpendicular to the axes, but
slip at one node corresponds to an inclined trajectory.

Projection on a line perpendicular tof2 generates a
unique one-dimensional trajectory inf -space.



For N nodes, suppose that in the steady state,M nodes
slip at least once during each cycle andN −M nodes
never slip (they comprise the setS0 of permanently
stuck nodes).

Actually, if a node slips once during the steady state, it must slip at least twice

if the process is to be cyclic.

We shall obtain a unique trajectory if we project the
actual trajectory on theM-dimensionalf -space
orthogonal tof j, j ∈ S0.

The tractions at the slipping nodes are

q j = qw
j + f j

and hence are unique.

In this reduced space, each constraint will be active at
least for part of the cycle.



The conjectured uniqueness of the steady state for
uncoupled system could be proved if we could
establish

(i) That for all possible steady states, the setS0 of
permanently stuck nodes is unique. For example,
that the assumption of two distinct states with
different setsS0 leads to a contradiction of some
kind.

(ii) That for a system in whichS0 is null (i.e. all
nodes slip at least twice in each cycle), the system
must approach a unique steady state, even if only
asymptotically.



If S0 is unique, we can consider the reducedM-node
system comprising only the slipping nodes.

The tangential displacements at these nodes are
equivalent to a time-invariant set of superposed nodal
forces at the slipping nodes, which could be relaxed by
corresponding time-invariant slips.

The reduced system has no permanently stuck nodes,
so (ii) would then be sufficient to establish uniqueness.



We repeat (ii)
That for a system in which S0 is null (i.e. all nodes
slip at least twice in each cycle), the system must
approach a unique steady state, even if only
asymptotically.

I believe this to be true even for coupled systems.

A heuristic argument is that the system memory is
contained in the slip displacements at nodes that are
instantaneously stuck.

No node is stuck all the time, so memory of the initial
condition must be exchanged between nodes during
each cycle.

This exchange process is likely to involve some loss of
memory. [As educators, we should be very aware of
this!]



This two node system is coupled (the constraints are
not parallel) and both nodes slip during each cycle:-
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Extreme positions are reached in the sequence
1→ 2→ 3→ 4→ 1...



With this scenario, we can solve for the unique steady
state.

Each corner of the rectangle must lie on one of the
constraints and shares one nodal displacement with the
previous corner.

There are therefore four constraint equations and four
‘shared-displacement’ equations for eight unknowns
— the coordinates of the four corners.

These equations are linear and hence have only one
solution.



Each segment of slip approaches monotonically to a
unique final state from whichever side we start.

If there is any instant in the cycle when both nodes
slip, the steady state is reached at that instant.

Can we prove this for general scenarios, or for the
N-node system?

Can we define a norm representing somehow the
difference between the instantaneous state and an
unspecified steady state [at the same point in the
loading cycle?]?

......



Application I: A random distribution of
two-dimensional microcracks.
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Suppose this body is subjected to nominally uniform
cyclic in-plane stresses.



Under a uniform far-field stress, a singleisolated plane
crack must either:-

(i) open completely;

(ii) close completely and remain stuck everywhere;

(iii) close completely and slip everywhere.

There are no conditions under which partial closure or
partial slip can occur.

A sufficiently sparse distribution ofN plane cracks
acts (mathematically) like a completely uncoupled
discreteN-node frictional system.

All the off-diagonal components of the stiffness
matrix, including the whole matrixBBB are zero.



We can extend to moderate levels of crack interaction
using Kachanov’s ‘simple’ theory.

The perturbation in the stress field at crackj due to
opening or slip of cracki is approximated as a uniform
local stress.

This uniform stress is taken as the average of the
tractions on the line of crackj

The resulting discrete system is coupled (BBB 6 6 6=== 000).
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This average traction is easily calculated using the
complex-variable solution to the isolated crack
problem (cracki) to determine the forces transmitted
across the line of crackj.



We calculated the influence coefficients (stiffness
matrix) for a random distribution of 100 cracks.

The far-field loading was assumed to be

SSS = SSS0+λSSS1cos(ωt) ,

whereSSS ≡ {σxx,σxy,σyy} and

SSS0 = {−1,0,−1} ; SSS1 = {0,1,0} .

A constant hydrostatic compressive stress and a
periodic shear stress.



We used Ahn’s algorithm to determine the upper and
lower bounds for the scalar load factorλ for
shakedown:-

For λ < λ1, shakedown occurs for all initial
conditions.

For λ > λ2 shakedown cannot occur [there is no safe
shakedown state].

For λ1 < λ < λ2 shakedown depends on the intial
conditions.
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The solid line shows the (unique) frictional energy
dissipation if coupling is neglected

The symbols△, ◦ show the minimum and maximum
dissipation respectively, depending on initial
conditions.



At sufficiently largeλ , the dissipation becomes
unique. Probably because all nodes (cracks) slip at
some time during the cycle.

We confirmed this by recording the proportion of
cracks that experience at least one period of slip and/or
opening per cycle in the steady state.



Application II: Generalized-Hertzian contact: the
effect of separation.
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Two non-conforming bodies of similar materials are
pressed together by a forceP and sheared by a force
Q, both of which can vary in an arbitrary but periodic
way.
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Q = f P

To avoid gross slip, we need|Q| < f P.

There will be an initial transient trajectoryOA, the
maximumP is reached atC and the maximumQ at D.



We can show that there will be no (incremental) slip as
long as

dP
dt

> 0 and

∣

∣

∣

∣

∂Q
∂P

∣

∣

∣

∣

< f ,

where f is the coefficient of friction.

In all other cases there will be a central stick zone
−c < x < c and surrounding slip zonesc < |x| < a.
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Q = f P

The slip zone atX has the same extent as the whole
contact region atY [Ciavarella-J̈ager theorem].

The memory of the transient phase betweenZ andA is
erased by the time we reachE.
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In the steady state, the contact area grows without slip
betweenF andB.

BetweenB andE there is a growing slip zone.

AT E, this slip zone instantaneously sticks everywhere
and a reverse slip zone grows betweenE andF, at
which point again there is instantaneously full stick.



Conclusions

• Frictional systems exhibit seemingly endless
complexities of behaviour despite the apparently
simple constitutive description.

• Simple models are helpful to make sense of the
resulting complex behaviour.

• Melan’s theorem applies only to systems with no
coupling between slip displacements and normal
reactions.

• The periodic steady state for coupled systems
generally exhibits dependence on initial conditions.



• History-dependence in frictional problems depends
on ‘system memory’ that resides in regions that are
instantaneously stuck.

• Some memory is ‘lost’ when a node slips, so if all
nodes slip at some time during each cycle, it is
likely that all memory of the initial state will be
lost, at least asymptotically, leading to a unique
steady state, even when the system is coupled.

• If a subset of nodes remains stuck (the permanent
stick zone), their locked-in slip displacements will
influence the cyclic slip at other nodesif and only if
the system is coupled.


